An Inexact Sequential Quadratic Optimization Algorithm for Nonlinear Optimization
نویسندگان
چکیده
We propose a sequential quadratic optimization method for solving nonlinear optimization problems with equality and inequality constraints. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the search direction (i.e., inexact subproblem solution) must satisfy so that global convergence of the algorithm for solving the nonlinear problem is guaranteed. The algorithm can be viewed as a globally convergent inexact Newton-based method. The results of numerical experiments are provided to illustrate the reliability of the proposed numerical method.
منابع مشابه
An Inexact Sequential Quadratic Optimization Algorithm for Large-Scale Nonlinear Optimization
We propose a sequential quadratic optimization method for solving nonlinear constrained optimization problems. The novel feature of the algorithm is that, during each iteration, the primal-dual search direction is allowed to be an inexact solution of a given quadratic optimization subproblem. We present a set of generic, loose conditions that the search direction (i.e., inexact subproblem solut...
متن کاملAn Inexact SQP Method for Equality Constrained Optimization
We present an algorithm for large-scale equality constrained optimization. The method is based on a characterization of inexact sequential quadratic programming (SQP) steps that can ensure global convergence. Inexact SQP methods are needed for large-scale applications for which the iteration matrix cannot be explicitly formed or factored and the arising linear systems must be solved using itera...
متن کاملA TRUST-REGION SEQUENTIAL QUADRATIC PROGRAMMING WITH NEW SIMPLE FILTER AS AN EFFICIENT AND ROBUST FIRST-ORDER RELIABILITY METHOD
The real-world applications addressing the nonlinear functions of multiple variables could be implicitly assessed through structural reliability analysis. This study establishes an efficient algorithm for resolving highly nonlinear structural reliability problems. To this end, first a numerical nonlinear optimization algorithm with a new simple filter is defined to locate and estimate the most ...
متن کاملAn inexact ℓ1 penalty SQP algorithm for PDE-constrained optimization with an application to shape optimization in linear elasticity
We develop an optimization algorithm which is able to deal with inexact evaluations of the objective function. The proposed algorithm employs sequential quadratic programming with a line search that uses the l1 penalty function for an Armijo-like condition. Both the objective gradient computations for the quadratic subproblems and the objective function computations for the line search admit so...
متن کاملOPTIMAL DESIGN OF DOUBLE LAYER GRIDS CONSIDERING NONLINEAR BEHAVIOUR BY SEQUENTIAL GREY WOLF ALGORITHM
The present paper tackles the optimization problem of double layer grids considering nonlinear behaviour. In this paper, an efficient optimization algorithm is proposed to achieve the optimization task based on the newly developed grey wolf algorithm (GWA) termed as sequential GWA (SGWA). In the framework of SGWA, a sequence of optimization processe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 24 شماره
صفحات -
تاریخ انتشار 2014